Model Based loT

And MBTAAS for loT Platforms

Amjad Mahfoud

loT Mashups:

Mashup tools have been proposed as a simple way to develop applications
by composing, or mashing-up, existing services in the Web.

This was supported by increasingly uniform communication protocols and APIs
based on REST principles[3].

Early mashup tools are Microsoft Popfly and Yahoo Pipes.

In the recent years, there has been a lot of interest in applying the same ideas
to the Internet of Things, also building on REST interfaces for the Internet of

things [3].

Well known examples for such tools are Clickscript, WoiKit as well as Paraimpu
[3].

Amijad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

For the connecting services, there are different concepts. The main,
predominant one is modeling data flow.

For others, mainly in the enterprise area, also centralized approaches are
considered. As an example, we show an illustration from Paraimpu. This shows
a typical flow from sensor data, to some processing up to the connection with
Web-based services.

@albeserra - WARNING! Your
dionea needs water NOW!!
A 2
N2
e
M

Arduino + Ethernet

@albeserra — Warning! Your
dionea Water Level is too low:

Mine HB e livello acqua

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Mashup tools typically provide a graphical editor for the composition of
services for one application.

This typically models the message flow between the components.

Components can be sensor nodes, processing or aggregation entities as well
as external Web-based services.

Thus, mashup tools can also be seen as specific forms of end-user
programming. but are however limited to the specific model of describing
message flow.

In addition, some mashup tools provide simulation tools and also
interoperability for messaging between different platforms.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Model-Based |oT

There is a broad range of model-based approached, up to domain specific
modeling languages.

Here, we mainly assume general purpose modeling tools like UML, even
though many more specific approaches exits.

For instance, there are several proposals for model-based approaches for
developing loT applications, e.g. the ThingML language as well as other
proposals [3].

The motivation for model-based developmentis to describe a system on @
higherlevel of abstraction. Typically, this is done in UML and other languages
by diagrams modeling specific aspects or views of a system.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Behavior can be described by examples in sequence diagrams, or by state
machines and activity diagrams. Activity diagrams describe the data and
event flow, similar to mashup tools.

State diagrams are used in many embedded domains to model the behavior
of specific objects. Also, state diagrams can be analyzed and verified formally
and code can be generated automatically.

Compilation & Deployment of App to
native SW System

& A\pp Development E m.r.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE

Sensors {] ﬂ

%gfﬂiﬁ R - g

@albemerra -
dioneWaterLevel = 5 WARING! Your
dione needs water
MOV
Sensor data Sensor data
Arduing Controller ﬂj
Sensors

i@alberserra —
WARMIMG! Your
dione water level is
too low.

5 = dioneWaterLeve| ==15

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

MBT in loT

Indeed, most recent |oT platforms are using standardized protocols to
communicate (MQTT, CoAP, HTTP).

This makes MBT testing deployment very suited by enabling design of a
generic model, based on these standards and producing test cases that can
be used over multiple applications.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Test
selechon
criteria

™ Test Architects

Test Archdec’rs MM

Publication

Specifications
MBT Test
@ model generation

FIWARE spec writers
Generic Enabler implementers

Execution

®

Test results

{pass/fail)

Ty

Test
repository

Test Script

(&

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

MBTAAS in loT

loT platforms offer services to applications users.

The question of conformance testing and validation of |oT platforms can be
tackled with the same "as a service” approach.

This section presents the general architecture of our Model Based Testing As a
Service (MBTAAS).

We then present in more details, how each service works individually in order
to publish, execute and present the tests/results.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Architecture:

Test Design WEB FRONT-END (WEE)

— — Persomal test reports Diashboard
Test Analyst MET Models }fhghﬂ-mﬁm
— Custom Test - E‘u.sn:-mt;t dan
Configuration layer - Tests selection

;Jh'::.:' @ IM;H:ir'g.prq:crrE I- @
EGM_TAAS (3]

data
WEE Publisher [_re=
EGM TALS | Test results
(XML}

1- execute tests a
EGM TAAS
SUT Backend TestExec

2- Get test results

2- 5end results

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

However, to the difference of a classical MBT process, MBTAAS implements
several web services, which communicate with each other in order to realize
testing steps.

A web service, uses web technology such as HTTP, for machine-to-machine
communication, more specifically for transferring machine readable file
formats such as XML and JSON.

In addition to the classical MBT process, the central piece of the architecture is
the database service that is used by all the other services

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Customization Service:

In order to provide a user friendly testing as a service environment, they
created a graphical web-front end service to configure and launch test
campaigns.

The welb-service enables:

» Test selection: from the proposed test cases, a user can choose to execute
only a part of them.

» Test Data: pre-configured data are used for the tests. The user is able to
add his own specific test data to the database and choose it for a test. It s
a test per test configurable feature.

» Reporting: by default the reporting service will store the result report in the
web-front end service. The default behavior can be changed to fit the user
needs for example, having the results in an other database, tool, efc.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

After completion of the test
configuration and having the launch
tests button

pressed, a configurationfile is
constructed. The configuration file as
can be seen

Configuration File excerpt, defines a
set of {key = value}.

This file is constructed with default
values that can be overloaded with
user defined values.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE

w

oo e

w o

0 G W N NN NN N NN
o -1

=

FEFFEIFEIIFISIIIFIIICIIIIIIIIIIIFIIIIIIIIIIIIIIISI IS IIIF RIS
FRIFRFaSAARESE REQUI $22333FFFEFFFF AR AR RR SRR
FRIFFERFFFIISIIRAI ISR ISR E e FEEEFIFIFIEIINETFERII ISR

$NAME OF THE OWNER OF THE REBORT
OWNER=EGM_TE_XMIL_PUBLISHER

REPORT_LOCATION=http://193.48.247.210:8081/report
#HOW TO REPORT (FOR EGM _TRAS BACKEND)
REPORT_TYPE=POST_URL

$URL OF SUT TC TEST WITH THE EORT (FULL

ENDPOCINT URL=http://193.48.247.246:10286

#URL of EGM TARS backend that will execute the tests
EGM TAAS BACKEND = localhost:8080/executeTests
#Name of the Mcdel file to be Used by EGM TAAS |

EGM TAAS MODEL = OrionCB_GE.xml
#§Where to Output the results in the EGM
EGM TAARS CUTPUT = tmp

4/15/2017

Publication service:

The publisher service, as it name states, publishes the abstract tests generated
from the model into concrete test description file. It requires three different
inputs for completion of its task:

1. the model,
2. the configuration file
3. test data.

The model provides test suites containing abstract tests. The concretization of
abstract tests is made with the help of the database and configuration file.

General information 1
Test Suite 1.*
1 £
Test Cases -
| Test Steps |1..*

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Execution service:

The execution service is the functional core of the MBTAAS architecture. The
execution service will run the test and collect results depending on the
configuration of the received test description file.

Each test is run against the SUT and a result report (next slide) is constructed on
test step completion.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

<teststep name=" UpdateEntityl">
<executionHResults>

<timestamp> {TIMESTAMP }< /timestamp>
<executionTimeMs>22< fexecutionTimeMs2

</executionResults>
<endpoint>

<value>{IP}: {PORT} /upContext

<isinvalid>=false</isinvalid>
</endpoint>
<method>POST< / method
<headers>{HEADERS}< [headers>
<payload>{PAYLOAD}< /payload>
<assertion_list>

<assertion>

<ty pe=J30N</type>

Amjad Y. Mahfoud || amjadoof@gmail.com | |

< /values

ASE

<keyzcode< [/ key>
<value>404</value>
<result>false</results
</assertion>
</assertion_list>
<result>false</result>

<response]
"errorCode™ : {
J!Eﬂde'ﬂ !'14[.{]1! .

"reasonPhraze” "Bad Request”

T"details® "JSON Parse Error”®
|

</response

!

</testastep:

4/15/2017

An Example of execution log

[2gm.modelTools.HttpRequestExecuter] VWalidating uarl : http:,.-",.-"_:lﬂﬂﬁfvlfupdatel:nntext
[egn.modelTools.HotpRequestExecuter] URL i= VALID

[egn.modelTools.HotpRequestExecuter] Starting Jetty HTTP Client

[egn.modelTools.HotpRequestExecuter] Jetty HTTP Client Started with Success

[egn.modelTools.HotpRequestExecuter] Creating recuest : URL = http:,.-"_:1026,.-"v1..fupdatet:nntext, HTTPMETHCD = POST
[egn.modelTools.HotpRequestExecuter] Regquest created

[egn.modelTools.HitpRequestExecuter] Request status code: 200

[egn.modelTools.HitpRequestExecuter] Response content: {

TerrorCode™ @ {
Teode™ @ 4007,
"reasonPhra=e™ : "Had Request™,
fdetail=s" : "J3CH Parse Error™
h

[egn.modelTools .. HetpRequestExecuter] Stopping Jetty HITP Client
[egn.modelTools. HetpRequestExecuter] Jetty HITP Client Stopped
[egn.modelTools . HttpRequestExecuter]

[egn.model.Assertion] Asserting...expression to be assert: i=s key "code™ contains value: 74047
[egn.modelTools . TestStepResponselarser] i=s JSCN data key "code™ contains value: 74047
[egn.modelToonls . TestStepResponseParser] no value of @ "404"™ has been found for id: "errorCode™
[egn.modelTools . TestStepResponseParser] no value of @ "404"™ has been found for id: "code”™
[egn.model.TestS5ten] Execution Result of step UpdateEntityl43 :@: false

Amijad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Reporfing service:

After executing the test, a file containing the test description alongside their
results are sent to and received by the reporting service.

The reporting service configuration is made in the web front-end service.

The configuration is passed with the test configuration file where the publisher
service re-transcribes that information to the file sent fo the execution service.

The execution service then includes the reporting configuration in the report
file where it is used in the reporting service once it receives it. By default the
reporting service will save the results in the database service.

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

Questions?

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

References:

References:

1.

http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-1oT

[Online; accessed 15-april-2017]

Gubbi, Jayavardhana, et al. "Internet of Things (loT): A vision, architectural
elements, and future directions." Future generation computer systems 29.7
(2013): 1645-1660.

Prehofer, Christian, and Luca Chiarabini. "From loT Mashups to Model-based
loT."

Ahmad, Abbas, et al. "Model-Based Testing as a Service for loT
Platforms." Infernational Symposium on Leveraging Applications of Formal
Methods. Springer International Publishing, 2016.

The FIWARE Project. https://www.fiware.org/developers-entrepreneurs/, [Online;
accessed 15-april-2017]

Amjad Y. Mahfoud || amjadoof@gmail.com || ASE 4/15/2017

http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

